首页> 外文OA文献 >RegnANN: Reverse Engineering Gene Networks Using Artificial Neural Networks
【2h】

RegnANN: Reverse Engineering Gene Networks Using Artificial Neural Networks

机译:RegnANN:使用人工神经网络进行逆向工程基因网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

RegnANN is a novel method for reverse engineering gene networks based on an ensemble of multilayer perceptrons. The algorithm builds a regressor for each gene in the network, estimating its neighborhood independently. The overall network is obtained by joining all the neighborhoods. RegnANN makes no assumptions about the nature of the relationships between the variables, potentially capturing high-order and non linear dependencies between expression patterns. The evaluation focuses on synthetic data mimicking plausible submodules of larger networks and on biological data consisting of submodules of Escherichia coli. We consider Barabasi and Erdös-Rényi topologies together with two methods for data generation. We verify the effect of factors such as network size and amount of data to the accuracy of the inference algorithm. The accuracy scores obtained with RegnANN is methodically compared with the performance of three reference algorithms: ARACNE, CLR and KELLER. Our evaluation indicates that RegnANN compares favorably with the inference methods tested. The robustness of RegnANN, its ability to discover second order correlations and the agreement between results obtained with this new methods on both synthetic and biological data are promising and they stimulate its application to a wider range of problems.
机译:RegnANN是一种基于多层感知器集合的逆向工程基因网络的新方法。该算法为网络中的每个基因构建一个回归变量,独立估计其邻域。通过加入所有社区获得整个网络。 RegnANN不对变量之间关系的性质进行任何假设,从而可能捕获表达模式之间的高阶和非线性相关性。评估侧重于模拟较大网络中可能的子模块的合成数据,以及由大肠杆菌子模块组成的生物数据。我们考虑Barabasi和Erdös-Rényi拓扑以及两种数据生成方法。我们验证了网络大小和数据量等因素对推理算法准确性的影响。将RegnANN获得的准确性得分与三种参考算法(ARACNE,CLR和KELLER)的性能进行系统地比较。我们的评估表明RegnANN与测试的推理方法相比具有优势。 RegnANN的鲁棒性,发现二阶相关性的能力以及用这种新方法在合成和生物学数据上获得的结果之间的一致性是有希望的,它们刺激了其在更广泛问题中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号